Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 131(7): 1149-1161, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37267450

RESUMO

BACKGROUND AND AIMS: Cultivated bananas resulted from inter(sub)specific hybridizations involving Musa species and subspecies (M. acuminata subspecies, M. schizocarpa, M. balbisiana) and the subsequent selection, centuries ago, of hybrids with parthenocarpic, seedless fruits. Cultivars have low fertility and are vegetatively propagated, forming groups of somaclones. Relatively few of them, mainly triploids, are grown on a large scale and characterization of their parental relationships may be useful for breeding strategies. Here we investigate parental relationships and gamete-type contributions among diploid and polyploid banana cultivars. METHODS: We used SNP genotyping data from whole-genome sequencing of 178 banana individuals, including 111 cultivars, 55 wild bananas and 12 synthetic F1 hybrids. We analysed the proportion of SNP sites in accordance with direct parentage with a global statistic and along chromosomes for selected individuals. KEY RESULTS: We characterized parentage relationships for 7 diploid cultivars, 11 triploid cultivars and 1 tetraploid cultivar. Results showed that both diploid and triploid cultivars could have contributed gametes to other banana cultivars. Diploids may have contributed 1x or 2x gametes and triploids 1x to 3x gametes. The Mchare diploid cultivar group, nowadays only found in East Africa, was found as parent of two diploid and eight triploid cultivars. In five of its identified triploid offspring, corresponding to main export or locally popular dessert bananas, Mchare contributed a 2x gamete with full genome restitution without recombination. Analyses of remaining haplotypes in these Mchare offspring suggested ancestral pedigree relationships between different interspecific banana cultivars. CONCLUSIONS: The current cultivated banana resulted from different pathways of formation, with implication of recombined or un-recombined unreduced gametes produced by diploid or triploid cultivars. Identification of dessert banana's parents and the types of gametes they contributed should support the design of breeding strategies.


Assuntos
Musa , Triploidia , Musa/genética , Diploide , Hibridização Genética , Células Germinativas
2.
Plant J ; 113(4): 802-818, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575919

RESUMO

Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.


Assuntos
Genoma de Planta , Musa , Humanos , Genoma de Planta/genética , Musa/genética , Nova Guiné , Triploidia , Hibridização Genética
3.
Hortic Res ; 9: uhac221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479579

RESUMO

The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.

4.
Gigascience ; 112022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488861

RESUMO

BACKGROUND: Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS: Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS: The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.


Assuntos
Musa , Musaceae , Cromossomos , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Musa/genética , Musaceae/genética , Melhoramento Vegetal , Retroelementos , Análise de Sequência de DNA
5.
Commun Biol ; 4(1): 1047, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493830

RESUMO

Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Musa/genética , Telômero , Sequenciamento por Nanoporos , Nanoporos
6.
Plant J ; 104(6): 1698-1711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067829

RESUMO

Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Musa/genética , Translocação Genética/genética , Aneuploidia , Análise Citogenética , Hibridização in Situ Fluorescente
7.
Nat Plants ; 5(8): 810-821, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308504

RESUMO

Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.


Assuntos
Evolução Molecular , Genoma de Planta , Musa/genética , Etilenos/biossíntese , Variação Genética , Anotação de Sequência Molecular , Musa/metabolismo
8.
Ann Bot ; 124(2): 319-329, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31241133

RESUMO

BACKGROUND AND AIMS: Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS: Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS: Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION: Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.


Assuntos
Musa , Resistência à Doença , Humanos , Hibridização Genética , Índia , Ilhas
9.
Mol Biol Evol ; 36(1): 97-111, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403808

RESUMO

Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.


Assuntos
Segregação de Cromossomos , Genoma de Planta , Variação Estrutural do Genoma , Musa/genética , Recombinação Genética , Cromossomos de Plantas , Ploidias
10.
Nat Plants ; 4(11): 879-887, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390080

RESUMO

Plant genomes are often characterized by a high level of repetitiveness and polyploid nature. Consequently, creating genome assemblies for plant genomes is challenging. The introduction of short-read technologies 10 years ago substantially increased the number of available plant genomes. Generally, these assemblies are incomplete and fragmented, and only a few are at the chromosome scale. Recently, Pacific Biosciences and Oxford Nanopore sequencing technologies were commercialized that can sequence long DNA fragments (kilobases to megabase) and, using efficient algorithms, provide high-quality assemblies in terms of contiguity and completeness of repetitive regions1-4. However, even though genome assemblies based on long reads exhibit high contig N50s (>1 Mb), these methods are still insufficient to decipher genome organization at the chromosome level. Here, we describe a strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies and demonstrate applicability by generating high-quality genome sequences for two new dicotyledon morphotypes, Brassica rapa Z1 (yellow sarson) and Brassica oleracea HDEM (broccoli), and one new monocotyledon, Musa schizocarpa (banana). All three assemblies show contig N50s of >5 Mb and contain scaffolds that represent entire chromosomes or chromosome arms.


Assuntos
Brassica rapa/genética , Brassica/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genoma de Planta/genética , Nanoporos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Óptica e Fotônica/métodos , Sequências Repetitivas de Ácido Nucleico/genética
11.
Genome Biol Evol ; 10(12): 3129-3140, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321324

RESUMO

Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana, as well as among subspecies in M. acuminata. Four particular M. acuminata subspecies have been proposed as the main contributors of edible bananas, all of which radiated in a short period of time in southeastern Asia. Clarifying the evolution of these lineages at a whole-genome scale is therefore an important step toward understanding the domestication and diversification of this crop. This study reports the de novo genome assembly and gene annotation of a representative genotype from three different subspecies of M. acuminata. These data are combined with the previously published genome of the fourth subspecies to investigate phylogenetic relationships. Analyses of shared and unique gene families reveal that the four subspecies are quite homogenous, with a core genome representing at least 50% of all genes and very few M. acuminata species-specific gene families. Multiple alignments indicate high sequence identity between homologous single copy-genes, supporting the close relationships of these lineages. Interestingly, phylogenomic analyses demonstrate high levels of gene tree discordance, due to both incomplete lineage sorting and introgression. This pattern suggests rapid radiation within Musa acuminata subspecies that occurred after the divergence with M. balbisiana. Introgression between M. a. ssp. malaccensis and M. a. ssp. burmannica was detected across the genome, though multiple approaches to resolve the subspecies tree converged on the same topology. To support evolutionary and functional analyses, we introduce the PanMusa database, which enables researchers to exploration of individual gene families and trees.


Assuntos
Genoma de Planta , Musa/genética , Filogenia , Bases de Dados como Assunto , Família Multigênica
12.
Mol Biol Evol ; 34(9): 2140-2152, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575404

RESUMO

Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars.


Assuntos
Musa/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Ligação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Análise de Sequência de DNA/métodos , Translocação Genética/genética
13.
BMC Genomics ; 17: 243, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984673

RESUMO

BACKGROUND: Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). RESULTS: We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. CONCLUSION: The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.


Assuntos
Biologia Computacional/métodos , Genoma de Planta , Musa/genética , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
14.
PLoS One ; 8(6): e67350, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840670

RESUMO

BACKGROUND: Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.


Assuntos
Genoma de Cloroplastos , Musa/genética , Plastídeos/genética , Alelos , Códon , Evolução Molecular , Genes de Plantas , Marcadores Genéticos , Funções Verossimilhança , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Triploidia
15.
J Virol ; 87(15): 8624-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720724

RESUMO

Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species-Goldfinger (eBSGFV), Imove (eBSImV), and Obino l'Ewai (eBSOLV)-in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed.


Assuntos
Genoma de Planta , Musa/virologia , Vírus de Plantas/genética , Dosagem de Genes , Ordem dos Genes , Genes Virais , Genótipo , Hibridização in Situ Fluorescente , Recombinação Genética
16.
Database (Oxford) ; 2013: bat035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23707967

RESUMO

Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/


Assuntos
Bases de Dados Genéticas , Genoma de Planta/genética , Musa/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Funções Verossimilhança , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Oryza/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética
17.
AoB Plants ; 2012: pls030, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240072

RESUMO

BACKGROUND AND AIMS: Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana-Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. METHODOLOGY: cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5'-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. PRINCIPAL RESULTS: A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. CONCLUSIONS: This EST collection offers a resource for studying functional genes, including transcripts expressed in banana-Mf interactions. Markers are applicable for genetic mapping, diversity characterization and marker-assisted breeding.

18.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22801500

RESUMO

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Musa/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Genótipo , Haploidia , Dados de Sequência Molecular , Musa/classificação , Filogenia
19.
Am J Bot ; 99(4): e176-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22473979

RESUMO

PREMISE OF THE STUDY: Microsatellite markers for Centella asiatica, an important medicinal herb, were developed and characterized to promote genetic and molecular studies. METHODS AND RESULTS: A GA/GT-enriched genomic library was constructed from an accession from Madagascar. Roughly 75% of the 768 clones of the enriched library contained microsatellites. Eighty sequences containing microsatellites were obtained from 96 positive clones. Specific primers were designed for 20 loci, and 17 of them displayed polymorphism when screened across 17 C. asiatica accessions, with an average of 4.3 alleles per locus. The observed and expected heterozygosity values averaged 0.114 and 0.379, respectively. CONCLUSIONS: This is the first report constructing an enriched genomic library and identifying microsatellite markers from C. asiatica. These 17 polymorphic microsatellite markers are a useful resource for this plant, applicable for diversity studies, pedigree analyses, and genetic mapping.


Assuntos
Centella/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Biblioteca Genômica , Repetições de Microssatélites/genética , Plantas Medicinais/genética , Ecótipo , Dados de Sequência Molecular , Polimorfismo Genético
20.
Bioinformatics ; 28(7): 1054-6, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285827

RESUMO

SUMMARY: We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. AVAILABILITY: The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form CONTACT: valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Anotação de Sequência Molecular/métodos , Software , Genômica/métodos , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...